Re: [GZG] laser classes
From: Roger Books <roger.books@g...>
Date: Mon, 24 Oct 2005 14:31:06 -0400
Subject: Re: [GZG] laser classes
_______________________________________________
Gzg-l mailing list
Gzg-l@lists.csua.berkeley.edu
http://lists.csua.berkeley.edu/mailman/listinfo/gzg-lBut it could be 11
dice.
3 on die A
6 6 6 6 6 6 6 6 6 4:5 om Die B.
Watch out for extra permutations.
Roger
On 10/24/05, B Lin <lin@rxkinetix.com> wrote:
>
> If you break down the last two rolls (the 9th six and a single point
hit
> (4 or 5) the odds are still the same whether you roll one die or two.
>
> Example: single die, chance of a 6 (1 in 6), chance of a 4 or 5 (2 in
6
> or 1 in 3) so chance of rolling a 6 plus a 4 or 5 equals 1 in 18(6 x
3)
> or rolling the other way (4 or 5 first, then a 6)= 1 in 18 (3 x 6).
For
> a total of 2 in 18 or 1 in 9.
>
> Rolling two dice - chance of rolling a combination of a 6 with a 5 or
4
> on the other die (11 chances out of 36 have a 6 (11/36) but only 4 of
> those have a 4 or 5 in them (4 of 46) final odds = 1 in 9)
>
> 6:6 (5:6)(4:6) 3:6 2:6 1:6
> (6:5) 5:5 4:5 3:5 2:5 1:5
> (6:4) 5:4 4:4 3:4 2:4 1:4
> 6:3 5:3 4:3 3:3 2:3 1:3
> 6:2 5:2 4:2 3:2 2:2 1:2
> 6:1 5:1 4:1 3:1 2:1 1:1
>
> What the calculation is 9 6's and a 4 or 5 on a single die for a total
> of 10 dice. It doesn't matter statistically which die (#1-10) rolls
the
> non-six, so using ten dice, one die or any number of dice in between
> that add up to ten doesn't matter for the calculation.
>
> --Binhan
>
> -----Original Message-----
> From: gzg-l-bounces@lists.csua.berkeley.edu
> [mailto:gzg-l-bounces@lists.csua.berkeley.edu] On Behalf Of McCarthy,
> Tom
> Sent: Monday, October 24, 2005 11:20 AM
> To: gzg-l@lists.csua.berkeley.edu
> Subject: RE: [GZG] laser classes
>
> I just meant that two dice lets you have a bad roll in the mix.
>
> 2 dice, for example, let's you roll: 6,6; 6,6; 6,2; 6; 6; 6; 6; 4 or
> 6,6; 6,6; 6,1; 6; 6; 6; 6; 4 or 6,6; 6,6; 6,4; 6; 6; 6; 6; 1 and still
> reach 19.
>
> Of course, if you are firm in your belief that you are as likely to
> reach 19 points of damage with 1 die as you are with multiple dice,
then
> I really have no argument to counter that.
>
> > -----Original Message-----
> > From: gzg-l-bounces+tom.mccarthy=xwave.com@lists.csua.berkeley.edu
> >
[mailto:gzg-l-bounces+tom.mccarthy=xwave.com@lists.csua.berkeley.edu]
> On
> > Behalf Of B Lin
> > Sent: Monday, October 24, 2005 1:11 PM
> > To: gzg-l@lists.csua.berkeley.edu
> > Subject: RE: [GZG] laser classes
> >
> > It actually doesn't make any difference whether you use one die or
two
> > or ten -
> > For example:
> > 1 die - chance to roll a 6 = 1 in 6, chance to roll two sixes 1 in
36
> (1
> > in 6 x 1 in 6)
> > 2 dice - chance to roll two sixes, 1 in 36.
> >
> > You can either roll a single die ten times or roll ten dice once
each
> > and the odds are exactly the same. Remember dice have no memory and
> are
> > not linked to each other (in theory) so one die's result is not
> affected
> > by the result of a previous roll, a future roll or neighboring die's
> > roll.
> >
> > --Binhan
> >
> > -----Original Message-----
> > From: gzg-l-bounces@lists.csua.berkeley.edu
> > [mailto:gzg-l-bounces@lists.csua.berkeley.edu] On Behalf Of
McCarthy,
> > Tom
> > Sent: Monday, October 24, 2005 10:48 AM
> > To: gzg-l@lists.csua.berkeley.edu
> > Subject: RE: [GZG] laser classes
> >
> > For 6 to the 9th, I get 10,077,696. That makes the odds of getting
> > exactly 19 points on one die to be 1 in 30,233,088 or so. On two
> dice,
> > it's more likely, but still pretty unlikely.
> >
> >
> > _______________________________________________
> > Gzg-l mailing list
> > Gzg-l@lists.csua.berkeley.edu
> > http://lists.csua.berkeley.edu/mailman/listinfo/gzg-l
> >
> > _______________________________________________
> > Gzg-l mailing list
> > Gzg-l@lists.csua.berkeley.edu
> > http://lists.csua.berkeley.edu/mailman/listinfo/gzg-l
>
>
> _______________________________________________
> Gzg-l mailing list
> Gzg-l@lists.csua.berkeley.edu
> http://lists.csua.berkeley.edu/mailman/listinfo/gzg-l
>
> _______________________________________________
> Gzg-l mailing list
> Gzg-l@lists.csua.berkeley.edu
> http://lists.csua.berkeley.edu/mailman/listinfo/gzg-l
>