Re: Acceleration Mass Equation (*LONG*!!)
From: Nyrath the nearly wise <nyrath@c...>
Date: Thu, 20 Aug 1998 18:43:26 -0400
Subject: Re: Acceleration Mass Equation (*LONG*!!)
Phillip E. Pournelle wrote:
>
> Could someone send me the equation that explains the amount of
mass
> consumed by fuel for continuous acceleration?
I'll try to explain (though I'm far from certain myself...)
Propellant Mass Flow is how many kilograms of fuel/propellant/
reaction mass/whatever that is expended per second. In rocketry
circles, this is called M-dot (symbolized with a lower case "m" with
a dot over it, alas, this doesn't seem to be on the keyboard)
Mdot = F / Ve
= dMp / dT (duh...)
where
Mdot = propellant mass flow in kg/sec
F = Thrust in Newtons or kg m/sec
Ve = Velocity of exhaust in m/sec
( the following is stupidly obvious, but included for completion )
dMp = mass of propellant burnt in current burn in kilograms
dT = duration of current burn in seconds
( in other words, kg/secs = kgs divided by seconds )
How much change in velocity does the rocket experience? This
is called "delta-V", and is measured in meters per second.
( In the Earth Force Source Book, delta-V would determine the
number of movement units the main drive could thrust the ship )
VELOCITY CHANGE OF CURRENT BURN (m/sec)
deltaVb = Ve * 1n[Mbs / Mbe]
where
deltaVb = velocity change of current burn in meters per second
Ve = Velocity of exhaust in m/sec
1n[x] = take the natural logarithm of x, (log e) NOT the common
logarithm
Mbs = Ship's mass at start of current burn in kg
Mbe = Ship's mass at end of current burn in kg
Now, here are some more equations for your game:
ROCKET EQUATIONS
=======================
UNITS
m = meter
kg = kilogram
x^2 = square of x
sqrt[x] = square root of x
g = 9.81 m/sec^2
1n[x] = Log(e), natural logarithm of x
G = 6.67206e-11 Nm^2/kg^2
c = 299792458 m/sec
p = 3.141592654
Va = average velocity (m/sec)
V = change in velocity (m/sec)
Vi = initial velocity (m/sec)
Vf = final velocity (m/sec)
S = change in distance (m)
T = time (seconds)
A = acceleration (m/sec^2)
Ai = "instantaneous" acceleration (m/sec^2)
ENGINE PARAMETERS
F = Thrust (Newtons or kg m/sec)
Pw = Thrust Power (kW)
Isp = Specific Impulse (seconds)
Mdot = Propellant mass flow (kg/sec)
Ve = Velocity of exhaust (m/sec)
Mps = Mass of propulsion system (power plant+thrust system) (kg)
dMp = Mass of propellant burnt in current burn (kg)
Mp = Total mass of propellant carried (kg)
Alpha = Specific Power = Pw / Mps (kW/kg)
Vch = Characteristic Velocity
Epsilon = percentage of propellant mass converted into energy
VEHICLE PARAMETERS
Mpl = Mass of ship's payload (kg)
Ms = Ship's structural mass (kg)
Mt = Ship total mass = Mp + Mpl + Mps + Ms (kg)
Me = Ship's mass empty (i.e., all propellant burnt) (kg)
= Mt - Mp
Mc = Ship's "current" mass (at this moment in time) (kg)
Mbs = Ship's mass at start of current burn (kg)
{At start of mission = Mt. Later it is Mt - (sum of all DMp's of
all
burns)}
Mbe = Ship's mass at end of current burn (kg)
Lambda = Ship's mass ratio = Mt / Me
deltaV = Ship's total velocity change capability (m/sec)
dTm = Maximum duration of burn (seconds)
MISSION PARAMETERS
deltaVb = Velocity change of current burn (m/sec)
dT = Duration of current burn (seconds)
* WARNING * The below equations assume a constant acceleration,
which is not true for a ship expending mass (for instance,
propellant). Ai = F/Mc so as the ship's mass goes down, the acceleration
goes up.
============================================
When you have two out of three of average velocity (Va),
change in distance (S) or time (T)
Va = S / T
S = Va * T
T = S / Va
============================================
When you have two out of three of acceleration (A),
change in velocity (V) or time (T)
A = V / T
V = A * T
T = V / A
============================================
When you have two out of three of change in distance (S),
acceleration (A), or time (T)
plus Initial Velocity (Vi) Note: if deaccelerating, acceleration A is
negative
S = (Vi * T) + ((A * (T^2)) / 2)
A = (S - (Vi * T)) / ((T^2) / 2)
T = (sqrt[(Vi^2) + (2 * A * S)] - Vi) / A
If Vi = 0 then
S = (A * (T^2)) / 2
A = (2 * S) / (T^2)
T = sqrt[(2 * S) / A]
============================================
When you have two out of three of change in distance (S),
acceleration (A), or final velocity (Vf)
plus Initial Velocity (Vi) Note: if Vf < Vi, then A will be negative
(deacceleration)
S = (Vf^2 - Vi^2) / (2 * A)
A = (Vf^2 - Vi^2) / (2 * S)
Vf = sqrt[Vi^2 + (2 * A * S)]
If Vi = 0 then
S = (Vf^2) / (2 * A)
A = (Vf^2) / (2 * A)
Vf = sqrt[2 * A * S]
============================================
If the ship constantly accelerates to the midpoint, then
deaccelerates to arrive with zero velocity at the
destination:
T = 2 * sqrt[S / A]
S = (A * (T^2)) / 4
A = (4 * S) / (T^2)
============================================
THRUST (Newtons or kg mt/sec)
F = Mbs * A
= Mdot * Ve
= Mdot * g * Isp
= (dMp * Ve) / dT
============================================
THRUST POWER (kW)
Pw = (Mdot * (Ve^2)) / 2
Pw = (dMp * (Ve^2)) / (2 * dT)
============================================
SPECIFIC IMPULSE (seconds)
Isp = Ve / g
= F / (g * Mdot)
============================================
PROPELLANT MASS FLOW (kg/sec)
Mdot = dMp / dT
= F / (g * Isp)
= F / Ve
============================================
VELOCITY OF EXHAUST (m/sec)
Ve = g * Isp
= F / Mdot
Ve/c = sqrt[ epsilon * (2-epsilon)]
Ve/c = exhaust velocity in fractions of the velocity of light
============================================
MASS OF PROPELLANT BURNT IN CURRENT BURN (kg)
dMp = Mdot * dT
= (F * dT) / (g * Isp)
= (F * dT) / Ve
============================================
SPECIFIC POWER (kW/kg)
alpha = Pw / Mps
============================================
CHARACTERISTIC VELOCITY
Vch = sqrt[ 2 * alpha * dT ]
============================================
SHIP'S TOTAL MASS (kg)
Mt = Mp + Mpl + Mps + Ms
============================================
SHIP'S MASS EMPTY (all propellant burnt) (kg)
Me = Mt - Mp
============================================
SHIP'S MASS AT END OF BURN (kg)
Mbe = Mbs - Mbp
============================================
SHIP'S MASS RATIO (dimensionless number)
Lambda = Mt / Me
============================================
SHIP'S TOTAL VELOCITY CHANGE CAPABILITY (m/sec)
deltaV = Ve * 1n[Lambda]
= g * Isp * 1n[Lambda]
============================================
MAXIMUM DURATION OF BURN (seconds)
dTm = Mp / Mdot
============================================
VELOCITY CHANGE OF CURRENT BURN (m/sec)
deltaVb = Ve * 1n[Mbs / Mbe]
============================================
ACCELERATION (m/sec^2)
A = F / Mc
= (Mdot * Ve) / Mc
= (Mdot * g * Isp) / Mc